Embracing nature's diversity to nourish generations to come

To meet the world’s growing demand for food, we need to change what we grow and how we grow it.

To feed the planet’s growing population, global agriculture will need to produce more food in the next 50 years than in the previous 10,000–at a time when climate change is making our crops less productive.

Until now, the world’s approach to meeting this challenge has been to standardize what we grow and how we grow it. Modern agriculture practices focus on cultivating a few crops known to have high yields—today, rice, wheat, and maize provide nearly half the world’s plant-derived calories. We also standardize how we manage the crops we grow—most crops are treated uniformly on a per acre or per hundred acre basis with chemicals for issues like pests, weeds, and disease and fertilizers. But, an agriculture system that’s optimized for productivity and simplicity comes with risks.

Of the 30,000 edible plant species that are known, less than 1% are cultivated for human food
Source: The Food and Agriculture Organization of the United Nations

Intensively growing just a few varieties of plants makes our food supply vulnerable to pests, disease, and a changing climate. Over time, it also depletes the soil of nutrients and minerals, reduces the diversity of the soil’s microbiome, and diminishes the soil’s ability to store carbon. Overuse of fertilizers and chemicals also negatively affects soil health, creating a vicious cycle that makes our farmlands less productive and the food we grow less nutritious.

The team conducting research in strawberry fields in Northern California

Mineral is developing new technologies to help build a more sustainable, resilient, and productive food system

What if new technologies could help us embrace nature’s diversity and complexity, instead of simplifying it? If breeders could unlock the genetic diversity of the 30,000 edible plant species that exist worldwide, they might be able to identify plant species and varieties that would be resilient and productive under the pressure of climate change. If growers could understand how each and every plant on their farm is growing and interacting with its environment, they could reduce the use of fertilizer, chemicals, and precious resources like water, and explore sophisticated growing techniques like intercropping and cover cropping that restore soil fertility and increase productivity.


Building a complete picture of the field

We started our journey talking with breeders and growers around the world to learn about the challenges they face. From soybean farmers in Argentina to kiwifruit breeders in New Zealand, we heard from breeders that they need to gather much more information on many more varieties of biodiverse plants—and quickly, if they are going find varieties that are resilient and productive in the face of climate change.

Growers face hundreds of decisions every season, and we heard how current tools aren’t equipping them to meet the challenges they face. Even though they use digital tools like sensors, spreadsheets and GPS, their data is either siloed or doesn’t fully represent agriculture’s complexity.

Collecting strawberry images with an early prototype

The Mineral team saw an opportunity to build new software and hardware tools that can bring together diverse sources of information that until now were simply too complex or overwhelming to be useful. The team started by gathering readily available information on the environmental conditions in the field—for example, information on the soil, the weather, and historical crop data.

The Mineral team saw an opportunity to build new tools to help breeders and growers embrace the complexities of growing food.

Next, the team began to unearth new data on how plants in the field were actually growing and responding to their environment. To do so, the team developed a prototype plant rover that rolls through the fields, inspecting crops up close. Over the past few years, the plant rover has trundled through strawberry fields in California and soybean fields in Illinois, gathering high quality images of each plant and counting and classifying every berry and every bean. To date, the team has analyzed a range of crops like melons, berries, lettuce, oilseeds, oats and barley—from sprout to harvest.

By combining the imagery gathered by the rover with other data sets like satellite imagery, weather data, and soil information, the team is able to create a full picture of what’s happening in the field and use machine learning to identify patterns and useful insights into how plants grow and interact with their environment.


Mineral’s robotics, sensing and software tools collect and interpret diverse data from the field

The Mineral rover: rolling over fields to collect plant-level insights

Environmentally responsible
The low-emission electric powered rover is fitted with solar panels.
The rover comes in a variety of shapes and sizes so that it can adapt to fields with a range of different crops.
Plant mapping and identification
GPS software identifies the precise location of plants in the field.
Sensing and computer perception
Sophisticated cameras and machine perception tools inside the rover can identify issues in the field and analyze plant traits.

New insights into how plants grow

By combining data collected from the field, like plant height, leaf area and fruit size, with environmental factors like soil health and the weather, Mineral’s software tools can help breeders understand and predict how different varieties of plants respond to their environments. By mapping and imaging plants in the field, growers can troubleshoot and treat individual plants instead of entire fields, reducing both their costs and environmental impact. Tracking how the plants are growing over time can help growers predict the size and yield of their crop, enabling them to make better yield projections.


Bringing plant perception to global partners

In January 2023, Mineral graduated from the rapid prototyping environment of X. Today Mineral is an independent Alphabet company working to unlock a more sustainable, climate-resilient, and productive food system. The team has developed a suite of agriculture-specific technologies, including plant perception tools that collect and instantly make sense of images of crops and weeds in the field and a software platform that combines this data with hundreds of other agriculture data types. If you’d like to partner with Mineral or want to join a team that is tackling these challenges, Mineral would love to hear from you.