Malta aims to capture more clean energy when it’s produced by using salt to store it on a large scale.

The Moonshot

Huge Problem

A mismatch between when renewable energy is available and when it’s needed

Wind and solar power are abundant, clean, increasingly inexpensive energy sources, and already contribute significantly to efforts to decarbonize the electricity grid. But since the sun shines only part of the day and wind is unpredictable or strongest late at night, these energy sources are not consistent.

If there’s more energy produced than the electric grid needs, the capacity of wind and solar farms is simply wasted. Worse, if electricity demand spikes during periods of low renewable energy generation, utilities will often fire up so-called “peaker plants” which emit large amounts of CO2 relative to ordinary power plants. With no clean, cost-effective technology for storing renewable energy to serve these peaks, the amount of renewable energy the grid can handle could be capped, and the growth of renewable energy over the next decade could stagnate.

Radical Solution

A grid-scale energy storage technology that can “time shift” renewable energy

Technologies do exist to help the grid cope with quick demand spikes and to store energy for several months. But current solutions are expensive and are not capturing all of the energy produced by renewable energy sources. What if we could take full advantage of renewable energy with an inexpensive system that could be located just about anywhere and store energy for a few hours or even up to several weeks?

Breakthrough Technology

Store electricity as heat in giant tanks of molten salt

Nobel prize-winning Stanford physics professor Robert Laughlin designed a theoretical system that stores electricity as heat (in high temperature molten salt) and cold (in a low temperature liquid similar to the antifreeze you have in your car). The energy stored in salt can be kept for days or even weeks, until it’s needed.

In Malta’s system, energy is stored as thermal energy – both heat and cold. The thermodynamics behind Malta’s storage technology is shown here:

The Journey

In his work, Professor Laughlin mapped out the overall system and proved the math for how all the components should work together. X decided to start a small team to take the next step: designing the individual components and understanding the system overall well enough to evaluate whether this would work in the real world – and at a competitive price point.

After more than 2 years building CAD drawings, running extensive computer simulations, and 3D printing lots of parts, we have detailed engineering designs that are nearly ready to be turned into real machinery – down to the exact angle of each blade in a turbine and the strength and thickness of the material used.

(Left) Siyuan adjusts CAD drawings of technology that facilitates the cooling process. (Right) To build a highly efficient system, the team needs to design from every angle. Here, Sebastian, Adrienne, and Siyuan look at a 3D prototype to discuss blade height.

We have also learned that our system has some important qualities that make it viable from both an environmental and cost perspective:

What's Next

We’re moving quickly to test commercial viability and are looking for cutting edge, innovative industry partners to help us bring this system to life.

The next step is to build a megawatt-scale prototype plant which would be large enough to prove the technology at commercial scale. We are looking for partners with the expertise to build, operate and connect a prototype to the grid. Also, we are interested in talking to customers of grid-scale energy storage, energy system manufacturers, and energy system construction companies.

Want to work with Malta?

If interested in partnering with X and the Malta team, contact us with more information about how you can help bring this technology to market.

‹ Back to Explorations